
${ }^{\wedge}$) Note: This exercise deals with finding the component forces mathematically.

1. Calculate and sketch the horizontal and vertical components of the following forces. Round off your answers to the nearest whole number.

Note: One of the techniques you should learn as a physics student is to draw neat, clear diagrams free hand. In general, use a ruler to measure not to draw lines. The more you practice making diagrams, the better you will become. Diagrams should not be too big nor too small. And remember, a diagram is not a picture, it is a sketch displaying only relevant information.
a) 20 N Southeast

$F_{H}=14$ N East $\quad F_{V}=14 \mathrm{~N}$ South
c) $500 \mathrm{~N}, \mathrm{~N} 20^{\circ} \mathrm{W}$

$F_{H}=171 \mathrm{~N}$ West $\mathrm{F}_{\mathrm{V}}=470 \mathrm{~N}$ North

b) $\mathbf{1 4 0} \mathbf{N} \mathbf{0}^{\circ}$ from horizontal

$F_{H}=\underline{107} \mathbf{N}$ East $F_{V}=\underline{90} \mathbf{N}$ North
d) $500 \mathrm{~N}, \mathrm{~W} 20^{\circ} \mathrm{N}$

$F_{H}=470 \mathrm{~N}$ West $\mathrm{F}_{\mathrm{V}}=\mathbf{1 7 1} \mathrm{N}$ North
2. Mathematically, find the horizontal and vertical components of the following forces: Round off your answers to the nearest whole number.
(a)

$F_{H}=100$ N East
$F_{V}=0$
\qquad

(d) $\mathrm{F}_{\mathrm{H}}=\left(400 \operatorname{Cos} 45^{\circ}\right)=283 \mathrm{~N}$

$$
F_{H}=283 \mathrm{~N} \text { West }
$$

$$
F_{V}=283 \text { N North }
$$

(e)

$$
\begin{aligned}
& \mathbf{F}_{\mathrm{H}}=\frac{43 \mathrm{~N} \text { West }}{25 \mathrm{~N} \text { South }} \\
& \mathbf{F}_{\mathrm{V}}=2 \text {. }
\end{aligned}
$$

(b)

